Tractability of Kőnig Edge Deletion Problems

Diptapriyo Majumdar¹ Rian Neogi² Venkatesh Raman³ S. Vaishali⁴

¹Royal Holloway, University of London, Egham, United Kingdom
²University of Waterloo, Canada

³The Institute of Mathematical Sciences, HBNI, Chennai, India

⁴University of California, Santa Barbara, United States

March 29, 2021, BCTCS, Liverpool, United Kingdom

Outline

1 Kőnig graph and its properties

- **2** Parameterized Complexity
- **3** Kőnig Edge Deletion Problem
- 4 Related works
- **5** Conclusions

• Let G = (V, E) be an undirected graph.

- Let G = (V, E) be an undirected graph.
- A set of vertices $S \subseteq V(G)$ is said to be a vertex cover of G, if for every $uv \in E(G)$, $u \in S$, or $v \in S$.
- A set of edges $M \subseteq E(G)$ is said to be a matching of G if for no two edges of M share any endpoint.
- Minimum vertex cover size of G is vc(G), and maximum matching size of G is $\mu(G)$.

- Let G = (V, E) be an undirected graph.
- A set of vertices $S \subseteq V(G)$ is said to be a vertex cover of G, if for every $uv \in E(G)$, $u \in S$, or $v \in S$.
- A set of edges $M \subseteq E(G)$ is said to be a matching of G if for no two edges of M share any endpoint.
- Minimum vertex cover size of G is vc(G), and maximum matching size of G is $\mu(G)$.
- For any graph $\mathsf{vc}(G) \ge \mu(G)$.

- Let G = (V, E) be an undirected graph.
- A set of vertices $S \subseteq V(G)$ is said to be a vertex cover of G, if for every $uv \in E(G)$, $u \in S$, or $v \in S$.
- A set of edges $M \subseteq E(G)$ is said to be a matching of G if for no two edges of M share any endpoint.
- Minimum vertex cover size of G is vc(G), and maximum matching size of G is $\mu(G)$.
- For any graph $\mathsf{vc}(G) \ge \mu(G)$.
- A graph is said to be a *Kőnig graph* when $\mu(G) = \mathsf{vc}(G)$.

Bipartite and Kőnig graphs

Bipartite and Kőnig graphs

• A graph G is bipartite if $V(G) = A \uplus B$ and for every edge $uv \in E(G), u \in A$ and $v \in B$.

Bipartite and Kőnig graphs

- A graph G is bipartite if $V(G) = A \uplus B$ and for every edge $uv \in E(G), u \in A$ and $v \in B$.
- All bipartite graphs are Kőnig graphs, but not the converse.

Characteristics of Kőnig graph

Characteristics of Kőnig graph

• A graph G is a Kőnig graph if and only if for every minimum vertex cover S, there exists a matching M across $(S, V \setminus S)$, and saturating S.

• LP Relaxation for Vertex Cover: minimize $\sum_{v \in V(G)} x_v$ subject to for all $uv \in E(G), x_u + x_v \ge 1$ and for all $v \in V(G), 0 \le x_v \le 1$.

- LP Relaxation for Vertex Cover: minimize $\sum_{v \in V(G)} x_v$ subject to for all $uv \in E(G), x_u + x_v \ge 1$ and for all $v \in V(G), 0 \le x_v \le 1$.
- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.

- LP Relaxation for Vertex Cover: minimize $\sum_{v \in V(G)} x_v$ subject to for all $uv \in E(G), x_u + x_v \ge 1$ and for all $v \in V(G), 0 \le x_v \le 1$.
- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.
- $\bullet \ \mu(G) \leq \mu_f(G) = \mathrm{vc}_f(G) \leq \mathrm{vc}(G).$

- LP Relaxation for Vertex Cover: minimize $\sum_{v \in V(G)} x_v$ subject to for all $uv \in E(G), x_u + x_v \ge 1$ and for all $v \in V(G), 0 \le x_v \le 1$.
- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.
- $\bullet \ \mu(G) \le \mu_f(G) = \mathrm{vc}_f(G) \le \mathrm{vc}(G).$
- A graph G is a Kőnig graph if $vc_f(G) = vc(G)$ (we pass this observation that we were unable to find out in literature).

Outline

1 Kőnig graph and its properties

2 Parameterized Complexity

3 Kőnig Edge Deletion Problem

4 Related works

$L\subseteq \Sigma^*\times \mathbb{N}$

$L\subseteq \Sigma^*\times \mathbb{N}$

• \mathcal{A} runs in $f(k)|x|^c$ time.

 $L\subseteq \Sigma^*\times \mathbb{N}$

Yes if and only if $(x, k) \in L$

- \mathcal{A} runs in $f(k)|x|^c$ time.
- \mathcal{A} is called fixed-parameter algorithm (FPT algorithm).

 $L\subseteq \Sigma^*\times \mathbb{N}$

Yes if and only if $(x, k) \in L$

- \mathcal{A} runs in $f(k)|x|^c$ time.
- \mathcal{A} is called fixed-parameter algorithm (FPT algorithm).
- VERTEX COVER, $\{(G, k) | G \text{ has a vertex cover of size at most } k\}$.

• Some problems provably do not admit FPT algorithm.

- Some problems provably do not admit FPT algorithm.
- CLIQUE, DOMINATING SET.

- Some problems provably do not admit FPT algorithm.
- CLIQUE, DOMINATING SET.
- $FPT \subseteq W[1] \subseteq W[2] \subseteq \ldots$

• \mathcal{B} runs in $g(k)|x|^c$ time,

- \mathcal{B} runs in $g(k)|x|^c$ time,
- k' = f(k), and

- \mathcal{B} runs in $g(k)|x|^c$ time,
- k' = f(k), and
- $(x,k) \in L_1$ if and only if $(x',k') \in L_2$.

- \mathcal{B} runs in $g(k)|x|^c$ time,
- k' = f(k), and
- $(x,k) \in L_1$ if and only if $(x',k') \in L_2$.
- If for every problem $L' \in W[i]$, there is a parameterized reduction from L' to L, then L is W[i]-hard.

KONIG VERTEX DELETION **Input:** An undirected graph G = (V, E) and an integer k. **Parameter:** k **Question:** Is there $S \subseteq V(G)$ such that $|S| \leq k$, and G - S is a Kőnig graph?

KONIG VERTEX DELETION **Input:** An undirected graph G = (V, E) and an integer k. **Parameter:** k **Question:** Is there $S \subseteq V(G)$ such that $|S| \leq k$, and G - S is a Kőnig graph?

• KONIG VERTEX DELETION is fixed-parameter tractable (FPT) [MRSS08,MRSSS11].

KONIG VERTEX DELETION **Input:** An undirected graph G = (V, E) and an integer k. **Parameter:** k **Question:** Is there $S \subseteq V(G)$ such that $|S| \leq k$, and G - S is a Kőnig graph?

- KONIG VERTEX DELETION is fixed-parameter tractable (FPT) [MRSS08,MRSSS11].
- ODD CYCLE TRANSVERSAL, EDGE BIPARTIZATION are some related problems that are also FPT.

KŐNIG EDGE DELETION **Input:** An undirected graph G = (V, E), and an integer k **Parameter:** k **Question:** Is there $F \subseteq E(G)$ such that $|F| \leq k$, and G - F is a Kőnig graph?

KÕNIG EDGE DELETION **Input:** An undirected graph G = (V, E), and an integer k **Parameter:** k **Question:** Is there $F \subseteq E(G)$ such that $|F| \leq k$, and G - F is a Kõnig graph?

• It was conjectured that KÕNIG EDGE DELETION is W[1]-hard [MRSS08, MRSSS11].

KÕNIG EDGE DELETION **Input:** An undirected graph G = (V, E), and an integer k **Parameter:** k **Question:** Is there $F \subseteq E(G)$ such that $|F| \leq k$, and G - F is a Kõnig graph?

- It was conjectured that KÕNIG EDGE DELETION is W[1]-hard [MRSS08, MRSSS11].
- We settle this 11 years old conjecture by proving KŐNIG EDGE DELETION is W[1]-hard.

KÕNIG EDGE DELETION **Input:** An undirected graph G = (V, E), and an integer k **Parameter:** k **Question:** Is there $F \subseteq E(G)$ such that $|F| \leq k$, and G - F is a Kõnig graph?

- It was conjectured that KÕNIG EDGE DELETION is W[1]-hard [MRSS08, MRSSS11].
- We settle this 11 years old conjecture by proving KŐNIG EDGE DELETION is W[1]-hard.
- In fact, our W-hardness result holds even when input graph has a perfect matching.

KED-MATCHING **Input:** An undirected graph G, a maximum matching M, and an integer k. **Parameter:** k **Question:** Is there $F \subseteq E(G) \setminus M$ such that $|F| \leq k$, and G - Fis a Kőnig graph?

KED-MATCHING **Input:** An undirected graph G, a maximum matching M, and an integer k. **Parameter:** k **Question:** Is there $F \subseteq E(G) \setminus M$ such that $|F| \leq k$, and G-Fis a Kőnig graph?

• We prove that KED-MATCHING is FPT.

Outline

1 Kőnig graph and its properties

2 Parameterized Complexity

3 Kőnig Edge Deletion Problem

4 Related works

5 Conclusions

• We provide a parameterized reduction from INDEPENDENT SET to KÕNIG EDGE DELETION.

- We provide a parameterized reduction from INDEPENDENT SET to KÕNIG EDGE DELETION.
- Let (G, k) be an instance of INDEPENDENT SET.

- We provide a parameterized reduction from INDEPENDENT SET to KÕNIG EDGE DELETION.
- Let (G, k) be an instance of INDEPENDENT SET.
- We assume without loss of generality that k < n/2, as otherwise $n \leq 2k$ and INDEPENDENT SET becomes FPT.

- We provide a parameterized reduction from INDEPENDENT SET to KÕNIG EDGE DELETION.
- Let (G, k) be an instance of INDEPENDENT SET.
- We assume without loss of generality that k < n/2, as otherwise $n \leq 2k$ and INDEPENDENT SET becomes FPT.
- Let $V(G) = \{v_1, \dots, v_n\}.$

- (G', k') new instance, $V(G') = V(G) \cup C \cup P, k' = k,$ and $E(G') = E(G) \cup \{v_i p_i | i \in [n]\} \cup$
 - $\{cv,cp|c\in C,v\in V(G),p\in P\}.$

- (G', k') new instance, $V(G') = V(G) \cup C \cup P, k' = k,$ and $V(G') = V(G) \cup C \cup P, k' = k,$
 - $E(G') = E(G) \cup \{v_i p_i | i \in [n]\} \cup \{cv, cp | c \in C, v \in V(G), p \in P\}.$
- $V_1 = (C \cup V(G)) \setminus I, V_2 = P \cup I.$ We set $F = (V_2, V_2).$

- (G', k') new instance, $V(G') = V(G) \cup C \cup P, k' = k,$ and = (G') = F(G) = (G - k) = (k - k)
 - $E(G') = E(G) \cup \{v_i p_i | i \in [n]\} \cup \{cv, cp | c \in C, v \in V(G), p \in P\}.$
- $V_1 = (C \cup V(G)) \setminus I, V_2 = P \cup I.$ We set $F = (V_2, V_2).$
- (\Rightarrow) If |I| = k, then |F| = k and F is a solution of (G', k').

• (G', k') new instance, $V(G') = V(G) \cup C \cup P, k' = k,$ and $E(G') = E(G) \cup \{v_i p_i | i \in [n]\} \cup$

$$E(G) = E(G) \cup \{v_i p_i | i \in [n]\} \cup \{cv, cp | c \in C, v \in V(G), p \in P\}.$$

- (G', k') new instance, $V(G') = V(G) \cup C \cup P, k' = k,$ and
 - $$\begin{split} E(G') &= E(G) \cup \{v_i p_i | i \in [n]\} \cup \\ \{cv, cp | c \in C, v \in V(G), p \in P\}. \end{split}$$
- Let F be a Kőnig edge deletion set of G', and S be a minimum vertex cover of G' - F. Then, $|S| \le n + k$.

Outline

1 Kőnig graph and its properties

2 Parameterized Complexity

3 Kőnig Edge Deletion Problem

4 Related works

• LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.

- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.
- A graph G is a stable graph if $\mu_f(G) = \mu(G)$.

- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.
- A graph G is a stable graph if $\mu_f(G) = \mu(G)$.
- STABLE VERTEX DELETION: Is there a set at most k of vertices whose deletion results in a stable graph?

- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.
- A graph G is a stable graph if $\mu_f(G) = \mu(G)$.
- STABLE VERTEX DELETION: Is there a set at most k of vertices whose deletion results in a stable graph?
- (WEIGHTED) STABLE VERTEX DELETION is polynomial time solvable [BCKPS2015].

- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.
- A graph G is a stable graph if $\mu_f(G) = \mu(G)$.
- STABLE VERTEX DELETION: Is there a set at most k of vertices whose deletion results in a stable graph?
- (WEIGHTED) STABLE VERTEX DELETION is polynomial time solvable [BCKPS2015].
- STABLE EDGE DELETION is NP-Complete [BCKPS2015].

- LP Relaxation for Matching: maximize $\sum_{uv \in E(G)} y_{uv}$ subject to for all $v \in V(G)$, $\sum_{uv \in E(G)} y_{uv} \leq 1$, and for all $uv \in E(G)$, $0 \leq y_{uv} \leq 1$.
- A graph G is a stable graph if $\mu_f(G) = \mu(G)$.
- STABLE VERTEX DELETION: Is there a set at most k of vertices whose deletion results in a stable graph?
- (WEIGHTED) STABLE VERTEX DELETION is polynomial time solvable [BCKPS2015].
- STABLE EDGE DELETION is NP-Complete [BCKPS2015].
- EDGE INDUCED STABLE SUBGRAPH problem is FPT [MRSSS11,FTZFW18].

Outline

1 Kőnig graph and its properties

2 Parameterized Complexity

3 Kőnig Edge Deletion Problem

4 Related works

Conclusions and Open Problems

Conclusions and Open Problems

• What is the parameterized complexity status of STABLE EDGE DELETION problem?

THANK YOU