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Kőnig graph

• Let G = (V,E) be an undirected graph.
• A set of vertices S ⊆ V (G) is said to be a vertex cover of G,
if for every uv ∈ E(G), u ∈ S, or v ∈ S.

• A set of edges M ⊆ E(G) is said to be a matching of G if
for no two edges of M share any endpoint.

• Minimum vertex cover size of G is vc(G), and maximum
matching size of G is µ(G).

• For any graph vc(G) ≥ µ(G).
• A graph is said to be a Kőnig graph when µ(G) = vc(G).
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Bipartite and Kőnig graphs

• A graph G is bipartite if V (G) = A ]B and for every edge
uv ∈ E(G), u ∈ A and v ∈ B.

• All bipartite graphs are Kőnig graphs, but not the converse.
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Characteristics of Kőnig graph

• A graph G is a Kőnig graph if and only if for every
minimum vertex cover S, there exists a matching M across
(S, V \ S), and saturating S.

S

V (G) \ S
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Vertex Cover and Matching LP

• LP Relaxation for Vertex Cover:
minimize

∑
v∈V (G)

xv subject to

for all uv ∈ E(G), xu + xv ≥ 1 and
for all v ∈ V (G), 0 ≤ xv ≤ 1.

• LP Relaxation for Matching:
maximize

∑
uv∈E(G)

yuv subject to

for all v ∈ V (G),
∑

uv∈E(G)

yuv ≤ 1, and

for all uv ∈ E(G), 0 ≤ yuv ≤ 1.
• µ(G) ≤ µf (G) = vcf (G) ≤ vc(G).
• A graph G is a Kőnig graph if vcf (G) = vc(G) (we pass this
observation that we were unable to find out in literature).
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Fixed-Parameter Tractability

L ⊆ Σ∗ × N

(x, k) A

Yes if and only if (x, k) ∈ L

YES

NO

• A runs in f(k)|x|c time.
• A is called fixed-parameter algorithm (FPT algorithm).
• Vertex Cover, {(G, k)|G has a vertex cover of size at
most k}.
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Fixed-Parameter Intractability

• Some problems provably do not admit FPT algorithm.

• Clique, Dominating Set.
• FPT ⊆ W[1] ⊆ W[2] ⊆ . . ..
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Parameterized Reduction

(x, k) (x′, k′)B

L1 ⊆ Σ∗ × N L2 ⊆ Σ∗ × N

• B runs in g(k)|x|c time,
• k′ = f(k), and
• (x, k) ∈ L1 if and only if (x′, k′) ∈ L2.
• If for every problem L′ ∈W[i], there is a parameterized
reduction from L′ to L, then L is W[i]-hard.
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What is known?

Konig Vertex Deletion
Input: An undirected graph G = (V,E) and an integer k.
Parameter: k
Question: Is there S ⊆ V (G) such that |S| ≤ k, and G− S is
a Kőnig graph?

• Konig Vertex Deletion is fixed-parameter tractable
(FPT) [MRSS08,MRSSS11].

• Odd Cycle Transversal, Edge Bipartization are
some related problems that are also FPT.
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Our Problems

Kőnig Edge Deletion
Input: An undirected graph G = (V,E), and an integer k
Parameter: k
Question: Is there F ⊆ E(G) such that |F | ≤ k, and G− F is
a Kőnig graph?

• It was conjectured that Kőnig Edge Deletion is
W[1]-hard [MRSS08, MRSSS11].

• We settle this 11 years old conjecture by proving Kőnig
Edge Deletion is W[1]-hard.

• In fact, our W-hardness result holds even when input graph
has a perfect matching.
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Our Problems

KED-Matching
Input: An undirected graph G, a maximum matching M , and
an integer k.
Parameter: k
Question: Is there F ⊆ E(G)\M such that |F | ≤ k, and G−F
is a Kőnig graph?

• We prove that KED-Matching is FPT.
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Kőnig Edge Deletion

• We provide a parameterized reduction from Independent
Set to Kőnig Edge Deletion.

• Let (G, k) be an instance of Independent Set.
• We assume without loss of generality that k < n/2, as
otherwise n ≤ 2k and Independent Set becomes FPT.

• Let V (G) = {v1, . . . , vn}.
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Kőnig Edge Deletion

v1
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v3
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p2

p3

pn−k

ck+1

c2k

vn−k+1

vn−k+2

vn

pn−k+1

pn−k+2

pn

V1 V2

P

C

I

• (G′, k′) new instance,
V (G′) = V (G) ∪ C ∪ P, k′ = k,
and
E(G′) = E(G) ∪ {vipi|i ∈ [n]} ∪
{cv, cp|c ∈ C, v ∈ V (G), p ∈ P}.

• V1 = (C ∪ V (G)) \ I, V2 = P ∪ I.
We set F = (V2, V2).

• (⇒)If |I| = k, then |F | = k and F
is a solution of (G′, k′).
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set of G′, and S be a minimum
vertex cover of G′ − F . Then,
|S| ≤ n+ k.
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Stable graph

• LP Relaxation for Matching:
maximize

∑
uv∈E(G)

yuv subject to

for all v ∈ V (G),
∑

uv∈E(G)

yuv ≤ 1, and

for all uv ∈ E(G), 0 ≤ yuv ≤ 1.

• A graph G is a stable graph if µf (G) = µ(G).
• Stable Vertex Deletion: Is there a set at most k of
vertices whose deletion results in a stable graph?

• (Weighted) Stable Vertex Deletion is polynomial
time solvable [BCKPS2015].

• Stable Edge Deletion is NP-Complete [BCKPS2015].
• Edge Induced Stable Subgraph problem is FPT
[MRSSS11,FTZFW18].
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• (Weighted) Stable Vertex Deletion is polynomial
time solvable [BCKPS2015].

• Stable Edge Deletion is NP-Complete [BCKPS2015].
• Edge Induced Stable Subgraph problem is FPT
[MRSSS11,FTZFW18].
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Conclusions and Open Problems

• What is the parameterized complexity status of Stable
Edge Deletion problem?
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THANK YOU
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